Image
Enhancement in Frequency Domain.
GuassianNoise , Salt & Pepper Noise, Laplacian Noise
clc;
clearall;
closeall;
a
= imread('Arjunlamborghini.jpg');
subplot(2,2,1);
imshow(a);
title('Original image');
b
= imnoise(a,'gaussian',0.1);
subplot(2,2,2);
imshow(b); title('Gaussian
Noise added');
c
=imnoise(a,'salt&
pepper',0.1);
subplot(2,2,3);
imshow(c); title('Salt
& Pepper Noise added');
d
=fspecial('laplacian',0.2);
e=imfilter(a,d,'replicate');
subplot(2,2,4);
imshow(e); title('Laplacian
Noise added');
Histgrams of GuassianNoise , Salt & Pepper Noise, Laplacian Noise images
clc;
clearall;
closeall;
a1
= imread('lamborghini.jpg');
a
= rgb2gray(a1);
b
= imnoise(a,'gaussian',0.1);
c
=imnoise(a,'salt&
pepper',0.1);
d
=fspecial('laplacian',0.2);
e=imfilter(a,d,'replicate');
subplot(2,2,1);
imhist(a); title('Histogram
of Gray image');
subplot(2,2,2);
imhist(b); title('Histogram
of Gaussian Noise image added');
subplot(2,2,3);
imhist(c); title('Histogram
of salt & Pepper noise added image');
subplot(2,2,4);
imhist(e); title('Histogram
of Laplacian noise added image');
Rayleigh Noise & Histograms
clc;
clearall;
closeall;
a=1;b=0.25;
i
= imread('lamborghini.jpg');
f
= rgb2gray(i);
f1
= double(f);
[r,
c]=size(f);
R
= a+(-b*log(1-rand(r,c))).^0.5; %RAYLEIGH NOISE EQUATION
mmax=max(max(R));
mmin=min(min(R));
const=100/(mmax-mmin);
for x = 1:1:r;
for y = 1:1:c;
noise(x,y)=const*(R(x,y)-mmin);
end
end
noisy_image=f1+noise;
subplot(2,3,1);
imshow(i),title('ORIGINAL IMAGE');
subplot(2,3,2);
imshow(f),title('GRAYSCALE IMAGE');
subplot(2,3,3);
imshow(uint8(noisy_image)),title('IMAGE WITH ADDED RAYLEIGH NOISE');
subplot(2,3,4);
imhist(f),
title('HISTROGRAM OF GRAYSCALE IMAGE');
subplot(2,3,5);
hist(noise),
title('HISTOGRAM OF RAYLEIGH NOISE')
subplot(2,3,6);
hist(noisy_image),title('HISTOGRAM OF IMAGE WITH RAYLEIGH NOISE')
Uniform Noise & Histograms
clc;
clearall;
closeall;
a=1;b=0.25;
i
= imread('lamborghini.jpg');
f
= rgb2gray(i);
f1
= double(f);
[r,
c]=size(f);
U
= a + (b-a)*rand(r,c); % UNIFORM
NOISE EQUATION
mmax=max(max(U));
mmin=min(min(U));
const=100/(mmax-mmin);
for x = 1:1:r;
for y = 1:1:c;
noise(x,y)=const*(U(x,y)-mmin);
end
end
noisy_image=f1+noise;
subplot(2,3,1);
imshow(i),title('ORIGINAL IMAGE');
subplot(2,3,2);
imshow(f),title('GRAYSCALE IMAGE');
subplot(2,3,3);
imshow(uint8(noisy_image)),title('IMAGE WITH ADDED UNIFORM NOISE');
subplot(2,3,4);
imhist(f),
title('HISTROGRAM OF GRAYSCALE IMAGE');
subplot(2,3,5);
hist(noise),
title('HISTOGRAM OF UNIFORM NOISE')
subplot(2,3,6);
hist(noisy_image),title('HISTOGRAM OF IMAGE WITH UNIFORM NOISE')
Exponential Noise & Histograms
clc;
clearall;
closeall;
a=1;b=0.25;
i
= imread('lamborghini.jpg');
f
= rgb2gray(i);
f1
= double(f);
[r,
c]=size(f);
E
= -log(1.12-rand(r,c)); %EXPONENTIAL
NOISE EQUATION
mmax=max(max(E));
mmin=min(min(E));
const=100/(mmax-mmin);
for x = 1:1:r;
for y = 1:1:c;
noise(x,y)=const*(E(x,y)-mmin);
end
end
noisy_image=f1+noise;
subplot(2,3,1);
imshow(i),title('ORIGINAL IMAGE');
subplot(2,3,2);
imshow(f),title('GRAYSCALE IMAGE');
subplot(2,3,3);
imshow(uint8(noisy_image)),title('IMAGE WITH ADDED EXPONENTIAL NOISE');
subplot(2,3,4);
imhist(f),
title('HISTROGRAM OF GRAYSCALE IMAGE');
subplot(2,3,5);
hist(noise),
title('HISTOGRAM OF EXPONENTIAL
NOISE')
subplot(2,3,6);
hist(noisy_image),title('HISTOGRAM OF IMAGE WITH EXPONENTIAL NOISE')
Lognormal Noise & Histograms
clc;
clearall;
closeall;
a=1;b=0.25;
i
= imread('lamborghini.jpg');
f
= rgb2gray(i);
f1
= double(f);
[r,
c]=size(f);
L
= a*exp(b*randn(r,c)); %LOGNORMAL
NOISE EQUATION
mmax=max(max(L));
mmin=min(min(L));
const=100/(mmax-mmin);
for x = 1:1:r;
for y = 1:1:c;
noise(x,y)=const*(L(x,y)-mmin);
end
end
noisy_image=f1+noise;
subplot(2,3,1);
imshow(i),title('ORIGINAL IMAGE');
subplot(2,3,2);
imshow(f),title('GRAYSCALE IMAGE');
subplot(2,3,3);
imshow(uint8(noisy_image)),title('IMAGE WITH ADDED LOGNORMAL NOISE');
subplot(2,3,4);
imhist(f),
title('HISTROGRAM OF GRAYSCALE IMAGE');
subplot(2,3,5);
hist(noise),
title('HISTOGRAM OF LOGNORMAL NOISE')
subplot(2,3,6);
hist(noisy_image),title('HISTOGRAM OF IMAGE WITH LOGNORMAL NOISE')
Blur Images , Restoration and
Histograms
clc;
clearall;
closeall;
a
= im2double(imread('lamborghini.jpg'));
a1=
rgb2gray(a);
PSF
= fspecial('motion', 21, 11);
blurred
= imfilter(a1, PSF, 'conv', 'circular');
noise_var
= 0.0001;
estimated_nsr
= noise_var/var(a1(:));
wnr3
= deconvwnr(blurred, PSF, estimated_nsr);
subplot(2,3,1);
imshow(a1),title('Grayscale Image');
subplot(2,3,2);
imshow(blurred),title('Blurred Image');
subplot(2,3,4);
imhist(a1),title('Histogram of Grayscale Image');
subplot(2,3,5);
imhist(blurred),title('Histogram of Blurred Image');
subplot(2,3,3);
imshow(wnr3)
title('Restoration of Blurred Image');
subplot(2,3,6);
imhist(wnr3);
title('Histogram of Restoration Image');
No comments:
Post a Comment